Run 7 - Heavy Ions Summary

Run 7 Strategies

- As much routine as possible (QGP factory)
 - avoid major and costly changes/upgrades:
 - no booster bunch merge
 - avoid risk of man-power shortage (cooling)
 - no IBS suppression lattice
 - only small changes at the time
 - stochastic cooling (we will have anyway)
 - some improvement on β * (0.8 m?)
 - backgrounds?
 - slowly increase no. of bunches (limit < 111?)
 - automation (software), reduce time between stores
 - reduced set-up time due to tunefeedback and decoupling on the ramp
 - touch machine as little as possible
 - go into production mode as early as possible
 - focus on reliability

x as aggressive as possible

- get major upgrades out of the way:
 - booster bunch merge (requires HW changes and development time > 2 weeks)
 - develop alternative to debunchrebunch in the AGS (untested!)
 - gap cleaning?
 - polarization development?
 - emittance?
 - transition crossing/pressure
 - focus on intensity (vs. cooling)
- develop IBS suppression lattice
 - start-up with a ramp that's still undeveloped
 - unknown outcome (lost time if doesn't work)
- production mode will start later, time between stores could be longer
 - machine might be 'touchier' (unknown lattice) => more lost ramps, less reliability
 - cooling (low mom. spread) could cause yellow to be more delicate => chromaticity control in yellow more important (also applies to routine strategy)

Issues discussed in 'overview'

- * determine optimal store length (STAR: longer than 4 h, PHENIX: shorter than 4 h)
 - who should define/decide the optimal length?
- * when should development after ramp-up be done? days vs. evenings/nights
- why did the automation task not get finished and implemented before run 6?
 - implementation of automatic orbit correction
 - can it happen this time?
- could the optimal refill-time be determined (in a 'formal' way)?
- what caused us to deviate from this optimal time? (list of failure, failure times, etc.)
- * we have to decide now about what lattice and which strategy to use!
 - meet this week (tomorrow?). who should be involved?

Injectors

- *what's the potential for a conflict between mode-switching and NSRL running?
- ★ in case of d-Au: mode switching needs to be exercised in a dry-run (hasn't been done in 4 years)
 - switching is 3-5 minutes
- * tandem is very reliable

Booster Acceleration/Bunch merge

Standard gold setup 0.93 to 101 MeV per nucleon

Merge

Squeeze

Brennan's new gold setup; doubles the intensity per bunch

Merge

Standard deuteron setup 8.7 to 506 MeV per nucleon

AGS bunch merge 24 → 4

* replace rebunch-debunch

- avoid debunching
 - no baby bunches
 - low dp/p instability avoided
 - less tweaking
- 2 days, 3 shifts with beam
- could be made standard operation even w/o booster bunch merge

RF improvements

- × 24 to 4 AGS bunch merge: must do
- reduce AtR shot-2-shot jitter (1 ns)
 - needs high frequency phase detection
 - improve AtR synchro: 1 man week (standard: 1 shift)
 - should do
- * booster bunch merge:
 - low level RF was implemented by 'bricolage' (not in the control system)
 - would need to dust off HW and home brew SW
 - requested man-power & time: 2 weeks min.
 - never transferred more than 7 cycles into AGS ("forbidden" by magnet cycle, solution exists?)
 - recommendation: don't do it for run 7

IBS suppression lattice

- predicted emittance growth with and w/o IBS suppression
- model calculations can be trusted (well calibrated w. exp. data!)

- assume 0.5 h at the beginning and 1 h between stores
- gain int. Lumi of about 25-30% predicted

IBS suppression lattice

- main contribution to transverse IBS is from the arc FODO cells
- * raise the tune (+1 in both planes), increase cell phase advance
- * limitations
 - sextupole strength, affect of phase advance on SD sextupole?
 - power supplies, shunt PS cabling scheme
 - γ_{t} moves
 - matching
 - dynamic aperture
- * test lattice w. 92 deg. phase advance, already existing
 - 37% IBS reduction
 - ramps developed for diff. energies: 100, 85, 31 GeV
 - blue beam had 83% transmission to 31 GeV (crossed transition!)
- assume 2 h lifetime, between 0.5-1 h between fills, this lattice could enhance luminosity by about 25%
- does the new phase advance affect other systems?
- * when should we stop the development and declare it failed?
- * ramp development for Au@100 GeV
 - would be approx. 1-2 weeks (Steve Tepikian)
 - dyn. apperture simulation desirable (Yun)
 - preparation of IBS suppression lattice likely to interfere with pp luminosity effort

stochastic cooling micro-bunch (1 109)

Signal suppression and BTF at 5.2 GHz.

14 of 16 cavities operating.

Cooling achieved!

Stochastic Cooling

- * Coherent signals are understood and can be dealt with.
- Cooling using narrow band cavities works.
- * RF voltage is constrained by the cooling system in yellow, blue should have no problems.
- * Automatic adjustment of cooling parameters has been checked piecewise.
- * Full automation looks straightforward.
- * Stochastic cooling has been demonstrated.
 - we expect visible improvement from cooling in yellow towards the end of the run 7 Au operation

Operational scenario for cooling

* Precooling yellow

- Is precooling needed? Rebucket if no.
- Check orbits, fix if needed. Close kickers and pickup (sequencer)
- Measure delay filters and correct (FEC to subordinates)
- Measure BTFs. Adjust cavity gains and phases. (same as above)
- Cool
- Periodically adjust delay, gains and phases (set interval on FEC)
- Cool
- If rebucketing not done, execute when emittance is small enough
- * For blue a fast feedback loop will adjust delay due to wind and other sources of vibration.
- * pre-cooling would take approx. 20 min.
 - if experiments don't take data during pre-cooling this affects recordable luminosity

Vacuum

- x IR10 layout
 - 2005: 8.5 m NEG coat added (removed Be pipe) => 10-11 Torr
- * cold bore
 - pre-2005: no active pumping during warm-up
 - 2005 shutdown: pump down before cooling starts installed TMPs (fixed and portable)
 - 4 Ion Pump/arc, 1 ion pump/triplet,
 - pump down to 10-9 Torr before cool down
 - no more pumps this year planned

* NEG

- added 45 m in 2006 , totals 463 m now
- add coated BBLR chambers in bi5 and yo5
- 80% NEG coating installed
- some warm bore areas expected in the low e-8 to low e-7 range
- ★ some cold bore areas (end of arc) low e-8, others stayed < e-9
 </p>
 - no significant pressure increases at present intensities
- * expect dynamic pressure rise from EC manageable for Au operation
- **★** EC during transition crossing could limit intensity

transition crossing

- * chromaticity has to change sign around transition
 - chrom=0 at transition can cause instability
 - change sign (+ octupoles) just before transition to avoid instability
 - transition jump changes chrom by +2 units ('naturally')
- we always start with a +4 unit jump (-2 to +2), ok with low intensities
 - typical setpoint changes end up around +8
 - meas. chrom vs. set chrom at store indicate a slope of 0.5 (instead of 1)
- * should we start with a +8 unit jump to begin with?
 - keep increment constant
 - decoupling at transition important (skew chromaticity could be zero!)
 - change start value to adjust timing of zero-crossing

Conclusion

- * we are confident to
 - repeat run4 parameters with more bunches
 - vaccuum upgrades
- * possible improvements beyond this are
 - more beta squeeze
 - improved vertex (RF changes in injectors)
 - booster bunch merge: discouraged by expert
 - stochastic cooling in yellow
 - improved set-up time
 - IBS suppression lattice
 - still needs to be discussed more
- * if development time is kept at a minimum run 7 could demonstrate 60% time at store